Sunday, December 21, 2008

Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics


In 1969, Leo Esaki (1973 Nobel Laureate) and Ray Tsu from IBM, USA, proposed research on man-made crystals using a semiconductor superlattice (a semiconductor structure comprising several alternating ultra-thin layers of semiconductor materials with different properties). This invention was perhaps the first proposal to advocate the engineering of a new semiconductor material, and triggered a wide spectrum of experimental and theoretical investigations. However, the study of what are now called low dimensional structures (LDS) began in the late 1970's when sufficiently thin epitaxial layers were first produced following developments in the technology of epitaxial growth of semiconductors, mainly pioneered in industrial laboratories for device purposes.

The LDS are materials structures whose dimensions are comparable with inter-atomic distances in solids (i.e. nanometre, nm). Their electronic properties are significantly different from the same material in bulk form. These properties are changed by quantum effects. At the inception of their investigation it was already clear that such structures were of great scientific interest and excitement and their novel properties caused by quantum effects offered potential for application in new devices. Moreover these complex LDS offer device engineers new design opportunities for tailor-made new generation electronic devices. The LDS could be considered as a new branch of condensed matter physics because of the large variety of possible structures and the changes in the physical processes.

One of the promising fabrication methods to produce and study structures with a dimension less than two such as quantum wires and quantum dots, in order to realise novel devices that make use of low-dimensional confinement effects, is self-organisation. Self-assembled nanostructured materials offer a number of advantages over conventional material technologies in a wide-range of sectors. Clearly, future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics.

Key Features:
- Contributors are world leaders in the field
- Brings together all the factors which are essential in self-organisation of quantum nanostructures
- Reviews the current status of research and development in self-organised nanostructured materials
- Provides a ready source of information on a wide range of topics
- Useful to any scientist who is involved in nanotechnology
- Excellent starting point for workers entering the field
- Serves as an excellent reference manual

Download:
Link_1
Or
Link_2
.

0 comments:

Post a Comment | Feed

Post a Comment



Related Posts with Thumbnails
 

Blog Archive

Recent Posts

  © Free E-Books U ask v provide by Free E-Books Download 2012

Disclaimer: This blog does not store any files on its server.We only index and link to content provided by sites.

USER AGREEMENT PLEASE READ : The creator of THIS PAGE or the ISP(s) hosting any content on this site take NO responsibility for the way you use the information provided on this site. These links here are for educational purposes only and SHOULD BE VIEWED ONLY. If you download any files to view them, you are agreeing to delete them within a 24 hour period. If you are affiliated with any government, or ANTI-Piracy group or any other related group or were formally a worker of one you CANNOT enter this web site, cannot access any of its files and you cannot view any of the HTML files. All the objects on this site are PRIVATE property and are meant for previewing only. If you enter this site without following these agreements you are not agreeing to these terms and you are violating code 431.322.12 of the Internet Privacy Act signed by Bill Clinton in 1995 and that means that you CANNOT threaten our ISP(s) or any person(s) or company storing these files, cannot prosecute any person(s) affiliated with this page which includes family, friends or individuals who run or enter this web site. If you want to remove links to your website, Please send an email to professionalstudents[at]gmail[dot]com.